Chrome Extension
WeChat Mini Program
Use on ChatGLM

Image-based Approximation of Derivatives of Traditional Differential Metrics of Angular Distortion in Map Projections

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE(2023)

Cited 0|Views12
Abstract
Map projections are imaging procedures used to depict geographic features. We adopt the traditional differential metric and exploit the intrinsic image properties of map projections to establish an image-based differential metric for evaluating distortions in map projections, obtaining an effective, practical, and relatively accurate metric. We use bivariate polynomial functions to approximate the forward and inverse formulae of map projections. Thereafter, the proposed metric is conveniently calculated using the partial derivatives of the approximate forward functions based on polynomial functions, while complicated differential calculations are avoided. Moreover, multiple sampling and image filters mitigate the influence of imaging noise and achieve a high computation precision. Experiments were conducted using the NASA G.Projector mapping software to generate images from more than 200 map projections. Explicit equations of map projections were not required owing to the use of the mapping software. These images were then evaluated using the proposed metric through an implementation in the Julia programming language. The corresponding results confirmed that the proposed metric avoided the drawbacks of the great circle arc metric and provided considerably low errors (1.12 degrees on average) and high consistency (0.999 on average) with respect to the traditional differential metric. Although there were errors, experimental results indicated that feasibility and high usability were achieved by the image-based method for evaluating distortions in small-scale map projections.
More
Translated text
Key words
Map projection,distortion,differential metric,approximation,image-based method,polynomial function,image filter
求助PDF
上传PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined