谷歌浏览器插件
订阅小程序
在清言上使用

Cross-Priming Approach Induced Beneficial Metabolic Adjustments and Repair Processes during Subsequent Drought in Olive

Water(2022)

引用 1|浏览6
暂无评分
摘要
Cross-tolerance to abiotic stresses is a typical phenomenon in plants which occurs when exposure to one form of stress confers tolerance to a variety of stresses. Our study aims at investigating whether salinity priming could induce, after a recovery period (2 months), drought tolerance in olive cv. Chetoui. Here, our results revealed that this method of cross-adaptation had further enhanced the olive's subsequent response to drought. In fact, relative to the non-pretreated plants, the salt-pretreated ones displayed an enhancement in terms of shoot biomass accumulation, photosynthetic performance, water-use efficiency, and hydration status. Furthermore, the attenuation of oxidative stress and the maintenance of structural lipid contents, as well as their fatty acid composition in salt-pretreated plants, also supported the beneficial effect of this method. From our results, it seems that salt priming substantially modulated the physiological and biochemical responses of olive plants to subsequent drought. Accordingly, metabolite adjustments (soluble sugars and proline), the enzymatic antioxidant system (superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GP) activities) as well as the nonenzymatic one (phenols), and the increase in leaf density together with the raise of structural lipids content, to a lesser extent, seemed to perform a major role in the development of this improved tolerance to drought. The ameliorative response found in salt-primed olive plants, when subsequently exposed to drought, indicates an efficient cross-tolerance reaction. This could be particularly important in the Mediterranean area, where olive orchards are mainly cultivated under dry-land farming management.
更多
查看译文
关键词
cross-tolerance,drought,memory,olive plants,salinity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要