谷歌浏览器插件
订阅小程序
在清言上使用

Ecotoxicological Characterization of Engineered Biochars Produced from Different Feedstock and Temperatures

Science of the total environment(2023)

引用 6|浏览10
暂无评分
摘要
Biochar (BC) engineering, which has recently gained a lot of interest, allows designing the functional materials. BC modification improves the properties of pristine biochar, especially in terms of adsorption parameters. An interesting type of modification is the introduction of metals into the BC's structure. There is a knowledge gap regarding the effects of modified BC (e.g., BC-Mg, BC-Zn) on organisms. The aim of this study was the ecotoxicological evaluation of BC-Mg and BC-Zn composites, received under diverse conditions from willow or sewage sludge at 500 or 700 °C. The ecotoxicological tests with bacteria Vibrio fischeri (V. fischeri) and invertebrates Folsomia candida (F. candida) were applied to determine the toxicity of BC. The content of toxic substances (e.g., polycyclic aromatic hydrocarbons (PAHs), heavy metals (HMs), environmentally persistent free radicals (EPFRs)) in BC were also determined and compared with ecotoxicological parameters. The ecotoxicity of studied BCs depends on many variables: feedstock type, pyrolysis temperature and the modification type. The Zn and Mg modification reduced (from 28 to 63 %) the total Ʃ16 PAHs content in willow-derived BCs while in SL-derived BCs the total Ʃ16 PAHs content was even 1.5-3 times higher compared to pristine BCs. The Zn modified willow-derived BCs affected positively on F. candida reproduction but showed inhibition of luminescence V. fischeri. BC-Mg exhibited harmful effect to F. candida. The ecotoxicological assessment carried out sheds light on the potential toxicity of BC-Zn and BC-Mg composites, which are widely used in the removal of heavy metals, pharmaceuticals, dyes from waters and soils.
更多
查看译文
关键词
Composite,Ecotoxicology,Metal modi fication,Zinc,Magnesium,Toxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要