谷歌浏览器插件
订阅小程序
在清言上使用

Measuring the Quantum State of Dark Matter

ANNALEN DER PHYSIK(2024)

引用 0|浏览10
暂无评分
摘要
I demonstrate a simple example of how the time series obtained from searches for ultralight bosonic dark matter (DM), such as the axion, can be used to determine whether it is in a coherent or incoherent quantum state. The example is essentially trivial, but I hope that explicitly addressing it provokes experimental exploration. In the standard coherent state, $\mathcal{O}(1)$ oscillations in the number density occur over the coherence time, $\tau_c=h/m v^2$, where $m$ is the particle mass and $v$ is the galactic virial velocity, leading to a reduction in the constraining power of experiments operating on timescales $T<\tau_c$, due to the unknown global phase. On the other hand if the DM is incoherent then no such strong number oscillations occur, since the ensemble average over particles in different streams gives an effective phase average. If an experiment detects a signal then the coherent or incoherent nature of DM can be determined by time series analysis over the coherence time. This finding is observationally relevant for DM masses, $10^{-17}\text{ eV}\lesssim m\lesssim 10^{-11}\text{ eV}$ (corresponding to coherence times between a year and 100 seconds), and can be explored by experiments including CASPEr, DMRadio, and AION. Coherence may also be measurable at higher masses in the microwave regime, but I have not explored it.
更多
查看译文
关键词
Quantum States
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要