Chrome Extension
WeChat Mini Program
Use on ChatGLM

Hot hole transfer at the plasmonic semiconductor/semiconductor interface

Nanoscale(2023)

Cited 4|Views5
No score
Abstract
Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer provides an attractive alternative for light-harvesting using the full solar spectrum. This defect-mediated hot-carrier transfer is identical at the plasmonic semiconductor/semiconductor interface and can overcome the low efficiency of plasmonic energy conversion, thus boosting the efficiency of IR-light towards energy conversion. Here, using femtosecond transient absorption (TA) measurements, we directly observe the ultrafast non-radiative carrier dynamics of LSPR-driven hot holes created in CuS nanocrystals (NCs) and CuS/CdS hetero nanocrystals (HNCs). We demonstrate that in the CuS NCs, the relaxation dynamics follows multiple relaxation pathways. Two trap states are populated by the LSPR-induced hot holes in times (100-500 fs) that efficiently compete with the conventional LSPR mechanism (250 fs). The trapped hot holes intrinsically relax in 20-40 ps and then decay in 80 ns and 700 ns. In the CuS/CdS HNCs, once the CuS trap states have been populated by the LSPR-generated hot holes, the holes get transferred through plasmon induced transit hole transfer (PITCT) mechanism in 200-300 ps to the CdS acceptor phase and relax in 1-8 and 40-50 mu s. The LSPR-recovery shows a weak excitation wavelength and fluence dependence, while the dynamics of the trap states remains largely unaffected. The direct observation of formation and decay processes of trap states and hole transfer from trap states provides important insight into controlling the LSPR-induced relaxation of degenerate semiconductors.
More
Translated text
Key words
plasmonic semiconductor/semiconductor,hot hole transfer
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined