Chrome Extension
WeChat Mini Program
Use on ChatGLM

Counterintuitive Structural and Functional Effects Due to Naturally Occurring Mutations Targeting the Active Site of the Disease-Associated NQO1 Enzyme

FEBS JOURNAL(2023)

Univ Granada | Departamento de Bioquímica y Biología Molecular y Celular | Acad Sci Czech Republ | Univ La Laguna | Departamento de Química Física

Cited 1|Views29
Abstract
Our knowledge on the genetic diversity of the human genome is exponentially growing. However, our capacity to establish genotype-phenotype correlations on a large scale requires a combination of detailed experimental and computational work. This is a remarkable task in human proteins which are typically multifunctional and structurally complex. In addition, mutations often prevent the determination of mutant high-resolution structures by X-ray crystallography. We have characterized here the effects of five mutations in the active site of the disease-associated NQO1 protein, which are found either in cancer cell lines or in massive exome sequencing analysis in human population. Using a combination of H/D exchange, rapid-flow enzyme kinetics, binding energetics and conformational stability, we show that mutations in both sets may cause counterintuitive functional effects that are explained well by their effects on local stability regarding different functional features. Importantly, mutations predicted to be highly deleterious (even those affecting the same protein residue) may cause mild to catastrophic effects on protein function. These functional effects are not well explained by current predictive bioinformatic tools and evolutionary models that account for site conservation and physicochemical changes upon mutation. Our study also reinforces the notion that naturally occurring mutations not identified as disease-associated can be highly deleterious. Our approach, combining protein biophysics and structural biology tools, is readily accessible to broadly increase our understanding of genotype-phenotype correlations and to improve predictive computational tools aimed at distinguishing disease-prone against neutral missense variants in the human genome.
More
Translated text
Key words
catalytic mechanism,genotype-phenotype correlations,protein structure-function,structural stability
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest