谷歌浏览器插件
订阅小程序
在清言上使用

Nucleation of Biomolecular Condensates from Finite-Sized Simulations

˜The œjournal of physical chemistry letters(2023)

引用 4|浏览22
暂无评分
摘要
The nucleation of protein condensates is a concentration-driven process of assembly. When modeled in the canonical ensemble, condensation is affected by finite-size effects. Here, we present a general and efficient route for obtaining ensemble properties of protein condensates in the macroscopic limit from finite-sized nucleation simulations. The approach is based on a theoretical description of droplet nucleation in the canonical ensemble and enables estimation of thermodynamic and kinetic parameters, such as the macroscopic equilibrium density of the dilute protein phase, the surface tension of the condensates, and nucleation free energy barriers. We apply the method to coarse-grained simulations of NDDX4 and FUS-LC, two phase-separating disordered proteins with different physicochemical characteristics. Our results show that NDDX4 condensate droplets, characterized by lower surface tension, higher solubility, and faster monomer exchange dynamics compared to those of FUS-LC, form with negligible nucleation barriers. In contrast, FUS-LC condensates form via an activated process over a wide range of concentrations. (GRAPHICS)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要