谷歌浏览器插件
订阅小程序
在清言上使用

Enhancement of Color and Photovoltaic Performance of Semi-Transparent Organic Solar Cell Via Fine-Tuned 1D Photonic Crystal

Scientific reports(2022)

引用 5|浏览4
暂无评分
摘要
Semi-transparent organic solar cells’ (ST-OSCs) photovoltaic and high optical performance parameters are evaluated in innovative applications such as power-generating windows for buildings, automobiles, and aesthetic designs in architectural and industrial products. These parameters require the precision design of structures that optimize optical properties in the visible region and aim to achieve the required photon harvest in UV and IR. These designs can be realized by integrating wavelength-selective photonics-based systems into ST-OSC to increase localized absorption in wavelengths greater than 600 nm and NIR and provide modifiable optical properties. In this study, methodologically, we followed highly detailed light management engineering and transfer matrix method-based theoretical and experimental approaches. We discussed the optimal structures by evaluating color, color rendering index, correlated color temperature, and photovoltaic performances for ST-OSCs, including one-dimensional photonic crystal (1D-PC) designed at different resonance wavelengths (λB) and periods. Finally, by integrating fine-tuned (MgF2/MoO3)N 1D-PC, we report the inherently dark purple-red color of the P3HT:PCBM bulk-heterojunction-based ST-OSC neutralizes with the optimal state was 0.3248 and 0.3733 by adjusting close to the Planckian locus. We also enhanced short current density from 5.77 mA/cm2 to 6.12 mA/cm2 and PCE were increased by 7.34% from 1.77% to 1.90% designed for the N = 4 period and λB = 700 nm.
更多
查看译文
关键词
Photonic crystals,Solar cells,Solar energy and photovoltaic technology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要