Sticky, stickier and stickiest - a comparison of adhesive performance in clingfish, lumpsuckers and snailfish.

The Journal of experimental biology(2022)

Cited 3|Views4
No score
Abstract
The coastal waters of the North Pacific are home to the northern clingfish (Gobiesox maeandricus), Pacific spiny lumpsucker (Eumicrotremus orbis) and marbled snailfish (Liparis dennyi) - three fishes that have evolved ventral adhesive discs. Clingfish adhesive performance has been studied extensively, but relatively little is known about the performance of other sticky fishes. Here, we compared the peak adhesive forces and work to detachment of clingfish, lumpsuckers and snailfish on surfaces of varying roughness and over ontogeny. We also investigated the morphology of their adhesive discs through micro-computed tomography scanning and scanning electron microscopy. We found evidence that adhesive performance is tied to the intensity and variability of flow regimes in the fishes' habitats. The northern clingfish generates the highest adhesive forces and lives in the rocky intertidal zone where it must resist exposure to crashing waves. Lumpsuckers and snailfish both generate only a fraction of the clingfish's adhesive force, but live more subtidal where currents are slower and less variable. However, lumpsuckers generate more adhesive force relative to their body weight than snailfish, which we attribute to their higher-drag body shape and frequent bouts into the intertidal zone. Even so, the performance and morphology data suggest that snailfish adhesive discs are stiffer and built more efficiently than lumpsucker discs. Future studies should focus on sampling additional diversity and designing more ecologically relevant experiments when investigating differences in adhesive performance.
More
Translated text
Key words
Ecology,Flow,Fluorescence,Pelvic disc,Suction,Work
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined