谷歌浏览器插件
订阅小程序
在清言上使用

A Machine Learning Enabled Hybrid Optimization Framework for Efficient Coarse-Graining of a Model Polymer

Research Square (Research Square)(2022)

引用 6|浏览12
暂无评分
摘要
This work presents a framework governing the development of an efficient, accurate, and transferable coarse-grained (CG) model of a polyether material. The framework combines bottom-up and top-down approaches of coarse-grained model parameters by integrating machine learning (ML) with optimization algorithms. In the bottom-up approach, bonded interactions of the CG model are optimized using deep neural networks (DNN), where atomistic bonded distributions are matched. In the top-down approach, optimization of nonbonded parameters is accomplished by reproducing the temperature-dependent experimental density. We demonstrate that developed framework addresses the thermodynamic consistency and transferability issues associated with the classical coarse-graining approaches. The efficiency and transferability of the CG model is demonstrated through accurate predictions of chain statistics, the limiting behavior of the glass transition temperature, diffusion, and stress relaxation, where none were included in the parametrization process. The accuracy of the predicted properties are evaluated in context of molecular theories and available experimental data.
更多
查看译文
关键词
Computational methods,Polymers,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要