谷歌浏览器插件
订阅小程序
在清言上使用

Approaching Bulk Mobility in PbSe Colloidal Quantum Dots 3D Superlattices.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 3|浏览43
暂无评分
摘要
3D superlattices made of colloidal quantum dots are a promising candidate for the next generation of optoelectronic devices as they are expected to exhibit a unique combination of tunable optical properties and coherent electrical transport through minibands. While most of the previous work was performed on 2D arrays, the control over the formation of these systems is lacking, where limited long-range order and energetical disorder have so far hindered the potential of these metamaterials, giving rise to disappointing transport properties. Here, it is reported that nanoscale-level controlled ordering of colloidal quantum dots in 3D and over large areas allows the achievement of outstanding transport properties. The measured electron mobilities are the highest ever reported for a self-assembled solid of fully quantum-confined objects. This ultimately demonstrates that optoelectronic metamaterials with highly tunable optical properties (in this case in the short-wavelength infrared spectral range) and charge mobilities approaching that of bulk semiconductor can be obtained. This finding paves the way toward a new generation of optoelectronic devices.
更多
查看译文
关键词
colloidal quantum dots,metamaterials,mobility,self-assembly,superlattices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要