谷歌浏览器插件
订阅小程序
在清言上使用

Automated Program Repair in the Era of Large Pre-trained Language Models.

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)(2023)

引用 29|浏览11
暂无评分
摘要
Automated Program Repair (APR) aims to help developers automatically patch software bugs. However, current state-of-the-art traditional and learning-based APR techniques face the problem of limited patch variety, failing to fix complicated bugs. This is mainly due to the reliance on bug-fixing datasets to craft fix templates (traditional) or directly predict potential patches (learning-based). Large Pre-Trained Language Models (LLMs), trained using billions of text/code tokens, can potentially help avoid this issue. Very recently, researchers have directly leveraged LLMs for APR without relying on any bugfixing datasets. Meanwhile, such existing work either failed to include state-of-the-art LLMs or was not evaluated on realistic datasets. Thus, the true power of modern LLMs on the important APR problem is yet to be revealed. In this work, we perform the first extensive study on directly applying LLMs for APR. We select 9 recent state-of-the-art LLMs, including both generative and infilling models, ranging from 125M to 20B in size. We designed 3 different repair settings to evaluate the different ways we can use LLMs to generate patches: 1) generate the entire patch function, 2) fill in a chunk of code given the prefix and suffix 3) output a single line fix. We apply the LLMs under these repair settings on 5 datasets across 3 different languages and compare different LLMs in the number of bugs fixed, generation speed and compilation rate. We also compare the LLMs against recent state-of-the-art APR tools. Our study demonstrates that directly applying state-ofthe-art LLMs can already substantially outperform all existing APR techniques on all our datasets. Among the studied LLMs, the scaling effect exists for APR where larger models tend to achieve better performance. Also, we show for the first time that suffix code after the buggy line (adopted in infilling-style APR) is important in not only generating more fixes but more patches with higher compilation rate. Besides patch generation, the LLMs consider correct patches to be more natural than other ones, and can even be leveraged for effective patch ranking or patch correctness checking. Lastly, we show that LLM-based APR can be further substantially boosted via: 1) increasing the sample size, and 2) incorporating fix template information.
更多
查看译文
关键词
Automated Program Repair,Machine Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要