A Non-Asymptotic Moreau Envelope Theory for High-Dimensional Generalized Linear Models

NeurIPS 2022(2022)

引用 14|浏览53
暂无评分
摘要
We prove a new generalization bound that shows for any class of linear predictors in Gaussian space, the Rademacher complexity of the class and the training error under any continuous loss $\ell$ can control the test error under all Moreau envelopes of the loss $\ell$. We use our finite-sample bound to directly recover the "optimistic rate" of Zhou et al. (2021) for linear regression with the square loss, which is known to be tight for minimal $\ell_2$-norm interpolation, but we also handle more general settings where the label is generated by a potentially misspecified multi-index model. The same argument can analyze noisy interpolation of max-margin classifiers through the squared hinge loss, and establishes consistency results in spiked-covariance settings. More generally, when the loss is only assumed to be Lipschitz, our bound effectively improves Talagrand's well-known contraction lemma by a factor of two, and we prove uniform convergence of interpolators (Koehler et al. 2021) for all smooth, non-negative losses. Finally, we show that application of our generalization bound using localized Gaussian width will generally be sharp for empirical risk minimizers, establishing a non-asymptotic Moreau envelope theory for generalization that applies outside of proportional scaling regimes, handles model misspecification, and complements existing asymptotic Moreau envelope theories for M-estimation.
更多
查看译文
关键词
linear models,theory,non-asymptotic,high-dimensional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要