谷歌浏览器插件
订阅小程序
在清言上使用

Multi-Step Gold Refinement and Collection Using Bi-Minerals in the Laozuoshan Gold Deposit, NE China

MINERALS(2022)

引用 0|浏览13
暂无评分
摘要
Gold and Bi-bearing parageneses are pivotal to understanding gold concentration and deposition processes. The large-scale Laozuoshan gold deposit is located in the Jiamusi Block, northeastern China, and has experienced complex mineralization processes with abundant gold and Bi-bearing minerals. However, the relationship between Bi-minerals and gold is unclear, preventing our understanding of the gold enrichment and precipitation mechanism in the Laozuoshan gold deposit. Optical microscope and SEM results show three stages of gold mineralization: pyrrhotite (Po-1) + arsenopyrite (Apy-1) + Bi-bearing minerals (Bis-1) + Au-1; arsenopyrite (Apy-2) + chlorite + Bi-bearing minerals (Bis-2) + Au-2; and arsenopyrite (Apy-3) + graphite + Bi-bearing minerals (Bis-3) + Au-3. The abundant amount of gold (Au-1-Au-3) is associated with Bi-bearing minerals (Bis-1-Bis-3), which coexist as inclusions and fill in fractures in these minerals. The mineral assemblages of arsenopyrite, Bi-minerals, and gold exhibit a clear As-Bi-Au mineralogy in the ores, and the ternary diagram of the chemical compositions of the Bi-minerals shows that Bi-minerals all fall in reducing regions, indicating that Bi-minerals are precipitated under reducing conditions. The gold compositions demonstrate a positive correlation (R-2 = 0.58) between Au and Bi. Consequently, we propose that the gold experienced the ore-forming fluids concentration and further Bi-melts scavenging for the Laozuoshan gold deposit mineralization. The Bi collector model is essential in interpreting the high-grade gold in the Laozuoshan gold deposit, indicating that the geochemical anomalies observed with bismuth may be a critical potential exploration target for the high-grade gold deposits in the Jiamusi Block.
更多
查看译文
关键词
arsenopyrite,gold,Bi-minerals,Laozuoshan,enrichment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要