Interactive Video Corpus Moment Retrieval Using Reinforcement Learning
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022(2022)
Abstract
Known-item video search is effective with human-in-the-loop to interactively investigate the search result and refine the initial query. Nevertheless, when the first few pages of results are swamped with visually similar items, or the search target is hidden deep in the ranked list, finding the know-item target usually requires a long duration of browsing and result inspection. This paper tackles the problem by reinforcement learning, aiming to reach a search target within a few rounds of interaction by long-term learning from user feedbacks. Specifically, the system interactively plans for navigation path based on feedback and recommends a potential target that maximizes the long-term reward for user comment. We conduct experiments for the challenging task of video corpus moment retrieval (VCMR) to localize moments from a large video corpus. The experimental results on TVR and DiDeMo datasets verify that our proposed work is effective in retrieving the moments that are hidden deep inside the ranked lists of CONQUER and HERO, which are the state-of-the-art auto-search engines for VCMR.
MoreTranslated text
Key words
Interactive search,video corpus moment retrieval,reinforcement learning,user simulation
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Reinforcement Learning Enhanced PicHunter for Interactive Search
MULTIMEDIA MODELING, MMM 2023, PT I 2023
被引用3
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话