谷歌浏览器插件
订阅小程序
在清言上使用

Evaluating the Role of Exogenously Applied Ascorbic Acid in Rescuing Soybean Plant Health in the Presence of Pathogen-Induced Oxidative Stress

Pathogens(2022)

引用 0|浏览13
暂无评分
摘要
Charcoal rot, caused by the soilborne hemibiotrophic fungus Macrophomina phaseolina, is a prevalent and economically significant plant disease. It is hypothesized that M. phaseolina induces oxidative stress-mediated senescence in plants. Infection by M. phaseolina results in the host’s accumulation of reactive oxygen species (ROS) that contribute toward basal defense. However, the production of ROS could also lead to cellular damage and senescence in host tissue. This study aimed to determine if ascorbic acid, a ROS scavenging molecule, could quench M. phaseolina-induced hydrogen peroxide (H2O2) generation in a soybean-M. phaseolina pathosystem. In vitro sensitivity tests showed that M. phaseolina isolates were sensitive to L-ascorbic acid (LAA) at concentrations of 10.5 to 14.3 mM based on IC50 (half-maximal inhibitory concentration) data. In planta cut-stem assays demonstrated that pre-treatment with 10 mM of either LAA (reduced form) or DHAA (dehydroascorbic acid; oxidized form) significantly decreased lesion length compared to the non-pretreated control and post-treatments with both ascorbic acid forms after M. phaseolina inoculation. Further, H2O2 quantification from ascorbic acid-pretreated tissue followed by M. phaseolina inoculation showed significantly less accumulation of H2O2 than the inoculated control or the mock-inoculated control. This result demonstrated that M. phaseolina not only induced H2O2 after host infection but also increased ROS-mediated senescence. This study shows the potential of ascorbic acid, an effective ROS scavenger, to limit ROS-mediated senescence associated with M. phaseolina infection.
更多
查看译文
关键词
Macrophomina phaseolina,charcoal rot,ascorbic acid,ROS scavenger,H2O2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要