Improving information retention in large scale online continual learning

ICLR 2023(2022)

引用 0|浏览22
暂无评分
摘要
Given a stream of data sampled from non-stationary distributions, online continual learning (OCL) aims to adapt efficiently to new data while retaining existing knowledge. The typical approach to address information retention (the ability to retain previous knowledge) is keeping a replay buffer of a fixed size and computing gradients using a mixture of new data and the replay buffer. Surprisingly, the recent work (Cai et al., 2021) suggests that information retention remains a problem in large scale OCL even when the replay buffer is unlimited, i.e., the gradients are computed using all past data. This paper focuses on this peculiarity to understand and address information retention. To pinpoint the source of this problem, we theoretically show that, given limited computation budgets at each time step, even without strict storage limit, naively applying SGD with constant or constantly decreasing learning rates fails to optimize information retention in the long term. We propose using a moving average family of methods to improve optimization for non-stationary objectives. Specifically, we design an adaptive moving average (AMA) optimizer and a moving-average-based learning rate schedule (MALR). We demonstrate the effectiveness of AMA+MALR on large-scale benchmarks, including Continual Localization (CLOC), Google Landmarks, and ImageNet. Code will be released upon publication.
更多
查看译文
关键词
online continual learning,moving average,geo-localization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要