谷歌浏览器插件
订阅小程序
在清言上使用

Real-time Monitoring of Stress Corrosion Cracking in 304 L Stainless Steel Pipe Using Acoustic Emission

Journal of nuclear materials(2022)

引用 2|浏览4
暂无评分
摘要
A stress corrosion cracking (SCC) monitoring indicator (MI) based on the acoustic emission (AE) technique is proposed for the real-time detection and monitoring of SCC initiation in 304 L stainless steel (SS) pipes used for the primary circuits of nuclear power plants (NPPs). A device is used to accelerate the initiation of SCC to shorten the experiment timeframe. A non-crack AE signal criterion was established, which was conducted by injecting an etchant and distilled water into 304 L SS pipe specimens as experimental and control groups, respectively. Furthermore, to characterize the AE signal responsible for cracking, the char-acteristics of the AE signal measured in the section between necking and fracture (where cracks occur and propagate) among the stress curves obtained from the 304 L SS tensile test using AE sensors were investigated. Subsequently, the maximum amplitude, energy, frequency characteristics (range and magni-tude), and waveform of the remaining AE signals were investigated after removing some AE signals by applying the non-crack AE signal criterion in the experiment where the SCC penetrated the pipe. These were compared with the maximum amplitude, energy, frequency characteristics, and waveform which were investigated in the tensile test to derive common characteristics for the two sets of crack signals to establish an SCC MI. To evaluate the performance of the developed SCC MI, the SCC monitoring experi-ment was halted when AE signals corresponding to the SCC MI criteria were measured, to fabricate a pipe wherein non-penetrating SCC was formed. In this manner, by applying the SCC MI to detect SCC in real time, we verified that the SCC MI had excellent SCC detection performance. Furthermore, we performed scanning electron microscopy (SEM) image analyses and SEM-energy dispersive X-ray spectrometry anal-yses to investigate the causes of SCC propagation.(c) 2022 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Stress corrosion cracking,Acoustic emission,304 L SS pipe,In-situ monitoring indicator,Sulfide inclusion,Non-penetration stress corrosion cracking
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要