Experimental Demonstration and Density Functional Theory Mechanistic Analysis of Arene C–H Bond Oxidation and Product Protection by Osmium Tetroxide in a Strongly Basic/Nucleophilic Solvent

The Journal of Organic Chemistry(2022)

引用 1|浏览1
暂无评分
摘要
Reactions that result in the oxy-functionalization of sp(2) C-H bonds to give phenols are relatively rare. Here we report experiments and density functional theory (DFT) calculations that demonstrate selective C-H bond hydroxylation of nitroarenes to their corresponding mono-phenoxide as the exclusive product using OsO4 in a highly basic solvent mixture of water, hydroxide, and pyridine. DFT calculations using a mixed explicit/continuum solvent approach indicate that there is likely a mixture of OsO4-hydroxide/pyridine ground-state structures that have competitive reactivity and that the mechanism involves the nucleophilic addition of an anionic metal-oxo species to the arene followed by a hydride transfer process that is different from the standard [3 + 2] mechanism often invoked for the OsO4 oxidation of sigma and pi bonds. This work demonstrates the utility of using a strongly basic solvent for C-H bond oxidation reactions as this effectively converts any reactive phenolic product into the corresponding phenoxide, which is protected and essentially inert to further oxidation by the nucleophilic metal-oxo species.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要