谷歌浏览器插件
订阅小程序
在清言上使用

Dihydromyricetin-Incorporated Multilayer Nanofibers Accelerate Chronic Wound Healing by Remodeling the Harsh Wound Microenvironment

Advanced Fiber Materials/Advanced fiber materials(2022)

引用 17|浏览5
暂无评分
摘要
The harsh microenvironment in wound (HMW) remains a major obstacle to chronic wound healing. Although a series of bioactive materials have been developed, few of them are multi-functional and able to accelerate wound healing via precisely remodeling the HMW. Herein, a series of dihydromyricetin (DHM)-incorporated multilayer nanofibers (termed DQHP-n, n = 0, 2, 6 and 10) are fabricated using a layer-by-layer (LBL) self-assembly technique. The average diameters of DQHP-n significantly increase from 0.30 ± 0.16 μm to 0.84 ± 0.28 μm (P < 0.05) along with the n value increased from 0 to 10, the tensile strength of that is also significantly improved from 1.12 ± 0.15 MPa to 2.16 ± 0.30 MPa (P < 0.05), and the water contact angle of that significantly decreases from 129.1 ± 1.5° to 76.6 ± 3.9° (P < 0.05). The DQHP-n are found to be biocompatible, in which DQHP-6 promoted cell migration through activation of the epithelial–mesenchymal transformation (EMT) pathway and reconstruction of the HMW by stopping bleeding, killing bacteria, eliminating inflammation, and scavenging reactive oxygen species (ROS). The in vivo evaluation is carried out via an E. coli-infected rat skin regeneration model. The DQHP-6 group demonstrates the best effect, as it healed up to 98.5 ± 1.0
更多
查看译文
关键词
Dihydromyricetin,Quaternized chitosan,Hyaluronic acid,Nanofiber,Wound dressing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要