Chrome Extension
WeChat Mini Program
Use on ChatGLM

Flow-network-controlled Shape Transformation of a Thin Membrane Through Differential Fluid Storage and Surface Expansion.

Physical review E(2023)

Cited 0|Views18
No score
Abstract
The mechanical properties of a thin, planar material, perfused by an embedded flow network, have been suggested to be potentially changeable locally and globally by fluid transport and storage, which can result in both small- and large-scale deformations such as out-of-plane buckling. In these processes, fluid absorption and storage eventually cause the material to locally swell. Different parts can hydrate and swell unevenly, prompting a differential expansion of the surface. In order to computationally study the hydraulically induced differential swelling and buckling of such a membrane, we develop a network model that describes both the membrane shape and fluid movement, coupling mechanics with hydrodynamics. We simulate the time-dependent fluid distribution in the flow network based on a spatially explicit resistor network model with local fluid-storage capacitance. The shape of the surface is modeled by a spring network produced by a tethered mesh discretization, in which local bond rest lengths are adjusted instantaneously according to associated local fluid content in the capacitors in a quasistatic way. We investigate the effects of various designs of the flow network, including overall hydraulic traits (resistance and capacitance) and hierarchical architecture (arrangement of major and minor veins), on the specific dynamics of membrane shape transformation. To quantify these effects, we explore the correlation between local Gaussian curvature and relative stored fluid content in each hierarchy by using linear regression, which reveals that stronger correlations could be induced by less densely connected major veins. This flow-controlled mechanism of shape transformation was inspired by the blooming of flowers through the unfolding of petals. It can potentially offer insights for other reversible motions observed in plants induced by differential turgor and water transport through the xylem vessels, as well as engineering applications.
More
Translated text
Key words
Wrinkling Patterns,Network Formation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined