TDCOSMO X. Automated Modeling of 9 Strongly Lensed Quasars and Comparison Between Lens Modeling Software

arxiv(2023)

引用 5|浏览32
暂无评分
摘要
To use strong gravitational lenses as an astrophysical or cosmological probe, models of their mass distributions are often needed. We present a new, time-efficient automation code for uniform modeling of strongly lensed quasars with GLEE, a lens modeling software, for high-resolution multi-band data. By using the observed positions of the lensed quasars and the spatially extended surface brightness distribution of the lensed quasar host galaxy, we obtain a model of the mass distribution of the lens galaxy. We apply this uniform modeling pipeline to a sample of nine strongly lensed quasars with HST WFC 3 images. The models show in most cases well reconstructed light components and a good alignment between mass and light centroids. We find that the automated modeling code significantly reduces the user input time during the modeling process. The preparation time of required input files is reduced significantly. This automated modeling pipeline can efficiently produce uniform models of extensive lens system samples which can be used for further cosmological analysis. A blind test through a comparison with the results of an independent automated modeling pipeline based on the modeling software Lenstronomy reveals important lessons. Quantities such as Einstein radius, astrometry, mass flattening and position angle are generally robustly determined. Other quantities depend crucially on the quality of the data and the accuracy of the PSF reconstruction. Better data and/or more detailed analysis will be necessary to elevate our automated models to cosmography grade. Nevertheless, our pipeline enables the quick selection of lenses for follow-up monitoring and further modeling, significantly speeding up the construction of cosmography-grade models. This is an important step forward to take advantage of the orders of magnitude increase in the number of lenses expected in the coming decade.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要