谷歌浏览器插件
订阅小程序
在清言上使用

Novel alginate immobilized TiO2 reusable functional hydrogel beads with high photocatalytic removal of dye pollutions

Journal of Polymer Engineering(2022)

引用 4|浏览2
暂无评分
摘要
TiO2 semiconductor photocatalysis is an effective technology for the treatment of wastewater containing organic dye pollutants, which has been received extensive focus. However, the problems in the recovery and reutilization process impede the large-scale applications of particulate photocatalytic materials. Herein, a macro sized hydrogel bead loaded with nano TiO2 powder was successfully prepared by taking advantage of the cross-linking and gel property of alginate salt, which could form egg-box structure naturally when Na+ ions in sodium alginate (SA) were replaced by divalent ions such as Cu2+, Co2+, and Sr2+ ions. The photocatalytic degradation rate of methyl orange (MO) solution in the presence of the hydrogel beads reaches 99% within 60 min under the ultraviolet light irradiation, which is competitive with that of TiO2 nano powder. Furthermore, the hydrogel beads prepared by this strategy maintain over 95% photocatalytic degradation rate after 10 cycles of degradation process. The results indicate that the network structure of alginate could immobilize and disperse TiO2 particle effectively, and it is readily for the spherical beads to contact and harvest the light, making the alginate beads have excellent photocatalytic functions. Also, the alginate based beads integrate good performance with high stability and excellent recyclability perfectly.
更多
查看译文
关键词
alginate,hydrogel beads,photocatalysis,TiO2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要