谷歌浏览器插件
订阅小程序
在清言上使用

FXYD5 promotes sorafenib resistance through the Akt/mTOR signaling pathway in hepatocellular carcinoma

European Journal of Pharmacology(2022)

引用 4|浏览12
暂无评分
摘要
Tumor chemoresistance is often a major cause for the failure of chemotherapy. The resistance of hepatocellular carcinoma (HCC) cells to sorafenib significantly limits its therapeutic effect in HCC patients. For the first time, we found that FXYD domain-containing ion transport regulator 5 (FXYD5) is highly expressed in sorafenib-resistant HCC cells. In addition, the protein expression level of FXYD5 was markedly higher in HCC tissues than in par-acancerous tissues. Remarkably, downregulation of FXYD5 expression in Huh7/sora cells reversed their resis-tance to sorafenib. Moreover, overexpression of FXYD5 reduced the sensitivity of HCC cells to sorafenib, while the downregulation of its expression in HCC cells had the opposite effect. We also found abnormal activation of the Akt/mTOR signaling pathway in Huh7/sora cells. Furthermore, MK2206, an Akt inhibitor, was found to significantly increase the sensitivity of HCC cells to sorafenib. More importantly, the expression level of p-Akt was positively correlated with the expression of FXYD5 in HCC tissues. Therefore, mechanistically, FXYD5 en-hances the resistance of HCC cells to sorafenib by activating the Akt/mTOR signaling pathway. In conclusion, this study showed that the activation of the FXYD5/Akt/mTOR signaling axis plays key role in the resistance of HCC cells to sorafenib, and FXYD5 may represent a new potential target for HCC therapy.
更多
查看译文
关键词
HCC,Sorafenib resistance,FXYD5,Akt,mTOR signaling pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要