Known Mechanisms That Increase Nuclear Fusion Rates in the Solid State

arxiv(2022)

引用 0|浏览5
暂无评分
摘要
We investigate known mechanisms for enhancing nuclear fusion rates at ambient temperatures and pressures in solid-state environments. In deuterium fusion, on which the paper is focused, an enhancement of >40 orders of magnitude would be needed to achieve observable fusion. We find that mechanisms for fusion rate enhancement up to 30 orders of magnitude each are known across the domains of atomic physics, nuclear physics, and quantum dynamics. Cascading such mechanisms could lead to an overall enhancement of 40 orders of magnitude and more. We present a roadmap with examples of how hypothesis-driven research could be conducted in – and across – each domain to probe the plausibility of technologically-relevant fusion in the solid state.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要