谷歌浏览器插件
订阅小程序
在清言上使用

Identifying Caspases and Their Motifs That Cleave Proteins During Influenza A Virus Infection.

Journal of visualized experiments(2022)

引用 2|浏览1
暂无评分
摘要
Caspases, a family of cysteine proteases, orchestrate programmed cell death in response to various stimuli, including microbial infections. Initially described to occur by apoptosis, programmed cell death is now known to encompass three interconnected pathways: pyroptosis, apoptosis, and necroptosis, together coined as one process, PANoptosis. Influence A virus (IAV) infection induces PANoptosis in mammalian cells by inducing the activation of different caspases, which, in turn, cleave various host as well as viral proteins, leading to processes like the activation of the host innate antiviral response or the degradation of antagonistic host proteins. In this regard, caspase 3-mediated cleavage of host cortactin, histone deacetylase 4 (HDAC4), and histone deacetylase 6 (HDAC6) has been discovered in both animal and human epithelial cells in response to the IAV infection. To demonstrate this, inhibitors, RNA interference, and site-directed mutagenesis were employed, and, subsequently, the cleavage or resistance to cleavage and the recovery of cortactin, HDAC4, and HDAC6 polypeptides were measured by western blotting. These methods, in conjunction with RT-qPCR, form a simple yet effective strategy to identify the host as well as viral proteins undergoing caspase-mediated cleavage during an infection of IAV or other human and animal viruses. The present protocol elaborates the representative results of this strategy, and the ways to make it more effective are also discussed.
更多
查看译文
关键词
Inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要