Electronic structure factors and the importance of adsorbate effects in chemisorption on surface alloys

NPJ COMPUTATIONAL MATERIALS(2022)

引用 8|浏览2
暂无评分
摘要
The chemisorption energy is an integral aspect of surface chemistry, central to numerous fields such as catalysis, corrosion, and nanotechnology. Electronic-structure-based methods such as the Newns-Anderson model are therefore of great importance in guiding the engineering of material surfaces with optimal properties. However, existing methods are inadequate for interpreting complex, multi-metallic systems. Herein, we introduce a physics-based chemisorption model for alloyed transition metal surfaces employing primarily metal d -band properties that accounts for perturbations in both the substrate and adsorbate electronic states upon interaction. Importantly, we show that adsorbate-induced changes in the adsorption site interact with its chemical environment leading to a second-order response in chemisorption energy with the d -filling of the neighboring atoms. We demonstrate the robustness of the model on a wide range of transition metal alloys with O, N, CH, and Li adsorbates yielding a mean absolute error of 0.13 eV versus density functional theory reference chemisorption energies.
更多
查看译文
关键词
Materials for energy and catalysis,Surfaces,interfaces and thin films,Theoretical chemistry,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要