Ethanol at Subinhibitory Concentrations Enhances Biofilm Formation in Salmonella Enteritidis

Foods(2022)

Cited 10|Views8
No score
Abstract
The survival of Salmonella Enteritidis in the food chain is relevant to its biofilm formation capacity, which is influenced by suboptimal environmental conditions. Here, biofilm formation pattern of this bacterium was assessed in the presence of ethanol at sub-minimal inhibitory concentrations (sub-MICs) by microtiter plate assays, cell characteristic analyses, and gene expression tests. It was observed that ethanol at subinhibitory concentrations (1/4 MIC, 2.5%; 1/2 MIC, 5.0%) was able to stimulate biofilm formation in S. Enteritidis. The OD595 value (optical density at 595 nm) used to quantify biofilm production was increased from 0.14 in control groups to 0.36 and 0.63 under 2.5% and 5.0% ethanol stresses, respectively. Ethanol was also shown to reduce bacterial swimming motility and enhance cell auto-aggregation ability. However, other cell characteristics such as swarming activity, initial attachment and cell surface hydrophobicity were not remarkedly impacted by ethanol. Reverse transcription quantitative real-time PCR (RT-qPCR) analysis further revealed that the luxS gene belonging to a quorum-sensing system was upregulated by 2.49- and 10.08-fold in the presence of 2.5% and 5.0% ethanol, respectively. The relative expression level of other biofilm-related genes (adrA, csgB, csgD, and sdiA) and sRNAs (ArcZ, CsrB, OxyS, and SroC) did not obviously change. Taken together, these findings suggest that decrease in swimming motility and increase in cell auto-aggregation and quorum sensing may result in the enhancement of biofilm formation by S. Enteritidis under sublethal ethanol stress.
More
Translated text
Key words
Salmonella Enteritidis,biofilm formation,ethanol stress,cell characteristic,gene expression,quorum sensing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined