基于Markov模型对泛基因型直接抗病毒药物治疗慢性丙型肝炎的药物经济学评价
China Journal of Pharmaceutical Economics(2022)
Abstract
目的 评价已在中国上市的泛基因型直接抗病毒药物(DAAs)治疗方案与聚乙二醇干扰素(Peg-IFN)为基础的治疗方案用于慢性丙型肝炎(CHC)患者的经济性.方法 从中国医疗卫生体系视角出发,以中国初治CHC患者为目标人群,构建Markov模型.分别模拟非肝硬化和代偿性肝硬化CHC患者在不同治疗方案下获得的质量调整生命年(QALYs)和所花费的直接医疗成本,并计算增量成本-效用比(ICUR).采用敏感性分析验证结果的稳健性.结果 对于非肝硬化CHC患者,与传统的聚乙二醇干扰素联合利巴韦林(PR)方案比较,3种泛基因型DAAs方案均增加了QALYs而显著降低了终身医疗成本,均为绝对优势方案.对于代偿性肝硬化患者,索磷布韦/维帕他韦方案的QALYs最高而终身治疗成本最低,依然是绝对优势方案.格卡瑞韦/哌仑他韦和索磷布韦联合达拉他韦方案与传统PR方案比较,ICUR分别为3106.09元/QALY和80843.45元/QALY;前者小于本研究设定的意愿支付阈值70892元/QALY(2019年我国人均国内生产总值(GDP)),后者明显小于2019年国内人均GDP的3倍(212676元/QALY).因此与传统PR方案比较,格卡瑞韦/哌仑他韦和索磷布韦联合达拉他韦方案亦具有显著的药物经济学优势.敏感性分析结果验证了基础分析结果的稳健性.以最具经济学优势的索磷布韦/维帕他韦为对照方案,通过成本-效用分析和阈值分析,测算若格卡瑞韦/哌仑他韦和索磷布韦联合达拉他韦方案达到同等经济性,格卡瑞韦/哌仑他韦、索磷布韦和达拉他韦需分别降价80.5%、80.0%和82.3%.结论 对于非肝硬化和代偿性肝硬化CHC患者,所有泛基因型DAAs治疗方案均具有显著的药物经济学优势,其中索磷布韦/维帕他韦最具成本-效用优势.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2010
被引用327 | 浏览
2011
被引用58 | 浏览
2004
被引用295 | 浏览
2022
被引用1574 | 浏览
2004
被引用270 | 浏览
2011
被引用160 | 浏览
2013
被引用50 | 浏览
2004
被引用200 | 浏览
2014
被引用123 | 浏览
2019
被引用97 | 浏览
2019
被引用4 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper