谷歌浏览器插件
订阅小程序
在清言上使用

Structure Refinement, Microstrains and Crystallite Sizes of Mg-Ni-phyllosilicate Nanoscroll Powders

Journal of applied crystallography(2022)

引用 3|浏览14
暂无评分
摘要
The morphology and structure of (Ni x Mg1−x )3Si2O5(OH)4 synthetic phyllosilicate nanoscrolls have been studied by means of electron microscopy and X-ray powder diffraction. Scrolling of phyllosilicate layers originates from size differences between octahedral and tetrahedral sheets. This strain-energy-driven process raises a number of questions, including the preferred direction of scrolling (along the a or b axis) and the presence of residual microstrain. In order to clarify these points, the structure of (Ni x Mg1−x )3Si2O5(OH)4 phyllosilicates (x = 0, 0.33, 0.5, 0.67, 1) was first described by a monoclinic Cc (9) unit cell, whose parameters decrease with increasing Ni concentration. The Williamson–Hall plots constructed for x = 0 and 0.67 reveal the absence of microstrain, which suggests that scrolling is an effective means of stress relaxation. The sizes of the crystallites were determined by using Rietveld refinement with predefined needle-like models and fundamental parameter fitting with crystallites of arbitrary form. Both approaches show qualitative and quantitative correlation, in terms of aspect ratio, with electron microscopy data. At the same time, the phyllosilicates studied do not demonstrate one preferred direction of scrolling: instead, there might be a mixture of chirality vectors codirected with the a or b axis, with the proportion altering with Ni concentration.
更多
查看译文
关键词
chrysotile,Rietveld refinement,nanocrystallites,transmission electron microscopy (TEM),X-ray diffraction (XRD)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要