谷歌浏览器插件
订阅小程序
在清言上使用

F+ Center Exchange Mechanism and Magnetocrystalline Anisotropy in Ni-doped 3C-Sic

Journal of magnetism and magnetic materials(2022)

引用 2|浏览4
暂无评分
摘要
Towards the development of a magnetic semiconductor suitable for spintronic device applications in extreme environments, we explored the possibility of inducing magnetic interaction in SiC by doping Nickel. The X-ray diffraction and Raman Spectroscopy studies confirm the incorporation of Ni into the host lattice. The magnetic measurements and electron spin resonance studies indicate the presence of room temperature ferromagnetic interaction in the system. The Curie temperature of 1, 3, and 5% Ni-doped samples have been found to be 420 K, 520 K, and 540 K respectively. Electron spin resonance study reveals that the valence state of Ni is 2+, which implies the creation of vacancies at both Silicon (VSi) and Carbon (VC) sites as they are tetravalent. The change in magnetization of the system with an increase in dopant concentration is consistent with the variation in the number of vacancies and free holes. The analysis of magnetization data using the Law of approach to saturation shows that the anisotropic constant decreases with an increase in temperature. The long-range magnetic interaction in the system is explained using the F+ center exchange mechanism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要