Clinical, Laboratory Data and Inflammatory Biomarkers at Baseline As Early Discharge Predictors in Hospitalized SARS-CoV-2 Infected Patients
PLoS ONE(2022)
Abstract
Background The SARS-CoV-2 pandemic has overwhelmed hospital services due to the rapid transmission of the virus and its severity in a high percentage of cases. Having tools to predict which patients can be safely early discharged would help to improve this situation. Methods Patients confirmed as SARS-CoV-2 infection from four Spanish hospitals. Clinical, demographic, laboratory data and plasma samples were collected at admission. The patients were classified into mild and severe/critical groups according to 4-point ordinal categories based on oxygen therapy requirements. Logistic regression models were performed in mild patients with only clinical and routine laboratory parameters and adding plasma pro-inflammatory cytokine levels to predict both early discharge and worsening. Results 333 patients were included. At admission, 307 patients were classified as mild patients. Age, oxygen saturation, Lactate Dehydrogenase, D-dimers, neutrophil-lymphocyte ratio (NLR), and oral corticosteroids treatment were predictors of early discharge (area under curve (AUC), 0.786; sensitivity (SE) 68.5%; specificity (S), 74.5%; positive predictive value (PPV), 74.4%; and negative predictive value (NPV), 68.9%). When cytokines were included, lower interferon-γ-inducible protein 10 and higher Interleukin 1 beta levels were associated with early discharge (AUC, 0.819; SE, 91.7%; S, 56.6%; PPV, 69.3%; and NPV, 86.5%). The model to predict worsening included male sex, oxygen saturation, no corticosteroids treatment, C-reactive protein and Nod-like receptor as independent factors (AUC, 0.903; SE, 97.1%; S, 68.8%; PPV, 30.4%; and NPV, 99.4%). The model was slightly improved by including the determinations of interleukine-8, Macrophage inflammatory protein-1 beta and soluble IL-2Rα (CD25) (AUC, 0.952; SE, 97.1%; S, 98.1%; PPV, 82.7%; and NPV, 99.6%). Conclusions Clinical and routine laboratory data at admission strongly predict non-worsening during the first two weeks; therefore, these variables could help identify those patients who do not need a long hospitalization and improve hospital overcrowding. Determination of pro-inflammatory cytokines moderately improves these predictive capacities.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
OPEN FORUM INFECTIOUS DISEASES 2023
被引用4
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined