谷歌浏览器插件
订阅小程序
在清言上使用

Brassinolide Alleviates Fe Deficiency-Induced Stress by Regulating the Fe Absorption Mechanism in Malus Hupehensis Rehd

Plant cell reports(2022)

引用 2|浏览31
暂无评分
摘要
Exogenous brassinolide promotes Fe absorption through mechanism I strategy, thus improving the tolerance of Malus hupehensis seedlings to Fe deficiency stress. Iron (Fe) deficiency is a common nutritional disorder that results in decreased yield and poor fruit quality in apple production. As a highly active synthetic analog of brassinosteroids, brassinolide (BL) plays numerous roles in plant responses to abiotic stresses. However, its role in Fe deficiency stress in apple plants has never been reported. Herein, we found that the exogenous application of 0.2 mg L−1 BL could significantly enhance the tolerance of apple seedlings to Fe deficiency stress and result in a low etiolation rate and a high photosynthetic rate. The functional mechanisms of this effect were also explored. We found that first, exogenous BL could improve Fe absorption through the mechanism I strategy. BL induced the activity of H+-ATPase and the expression of MhAHA family genes, resulting in rhizosphere acidification. Moreover, BL could enhance the activity of Fe chelate reductase and absorb Fe through direct binding with the E-box of the MhIRT1 or MhFRO2 promoter via the transcription factors MhBZR1 and MhBZR2. Second, exogenous BL alleviated osmotic stress by increasing the contents of osmolytes (proline, solution proteins, and solution sugar) and scavenged reactive oxygen species by improving the activities of antioxidant enzymes. Lastly, exogenous BL could cooperate with other endogenous plant hormones, such as indole-3-acetic acid, isopentenyl adenosine, and gibberellic acid 4, that respond to Fe deficiency stress indirectly. This work provided a theoretical basis for the application of exogenous BL to alleviate Fe deficiency stress in apple plants.
更多
查看译文
关键词
Brassinolide,Fe deficiency stress,Apple,Fe absorption mechanism I,MhBZRs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要