Chrome Extension
WeChat Mini Program
Use on ChatGLM

BoT-SORT: Robust Associations Multi-Pedestrian Tracking

CoRR(2022)

Cited 120|Views167
Abstract
The goal of multi-object tracking (MOT) is detecting and tracking all the objects in a scene, while keeping a unique identifier for each object. In this paper, we present a new robust state-of-the-art tracker, which can combine the advantages of motion and appearance information, along with camera-motion compensation, and a more accurate Kalman filter state vector. Our new trackers BoT-SORT, and BoT-SORT-ReID rank first in the datasets of MOTChallenge [29, 11] on both MOT17 and MOT20 test sets, in terms of all the main MOT metrics: MOTA, IDF1, and HOTA. For MOT17: 80.5 MOTA, 80.2 IDF1, and 65.0 HOTA are achieved. The source code and the pre-trained models are available at https://github.com/NirAharon/BOT-SORT
More
Translated text
Key words
tracking,associations,bot-sort,multi-pedestrian
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Using MRT to find the research sequence of this paper
Related Papers

The Detection and Rectification for Identity-Switch Based on Unfalsified Control.

Junchao Huang, Xiaoqi He Yebo Wu, Sheng Zhao
CoRR 2023

被引用0

Multiple Object Tracking Based on Variable GIoU-Embedding Matrix and Kalman Filter Compensation.

Kelei Sun, Qiufen Wen,Huaping Zhou,Kaitao Xiong,Jie Zhang, Qi Zhao, Jingwen Wu, Meiguang Li
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT IX 2023

被引用0

SY-Track: A Tracking Tool for Measuring Chicken Flock Activity Level

Xinjie Tan, Chengcheng Yin,Xiaoxin Li,Mingrui Cai, Weihao Chen, Zhen Liu,Junshu Wang, Yuxing Han
COMPUTERS AND ELECTRONICS IN AGRICULTURE 2024

被引用0

Computer Vision for Primate Behavior Analysis in the Wild

Richard Vogg,Timo Lüddecke, Jonathan Henrich,Sharmita Dey, Matthias Nuske, Valentin Hassler, Derek Murphy,Julia Fischer,Julia Ostner,Oliver Schülke,Peter M. Kappeler,Claudia Fichtel,
Nature methods 2025

被引用0

StrongOC-SORT: Make Observation-Centric SORT More Robust.

Yanhui Sun,Zhangjin Huang
COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, CAD/GRAPHICS 2023 2024

被引用0

A Full-Detection Association Tracker with Confidence Optimization for Real-Time Multi-Object Tracking

Youyu Liu, Xiangxiang Zhou, Zhendong Zhang, Yi Li,Wanbao Tao
Journal of Real-Time Image Processing 2024

被引用0

Augmented Millimeter Wave Radar and Vision Fusion Simulator for Roadside Perception

Haodong Liu, Jian Wan, Peng Zhou, Shanshan Ding, Wei Huang
ELECTRONICS 2024

被引用0

Mmmcl3dmot: Multi-Modal Momentum Contrastive Learning for 3D Multi-Object Tracking

Ru Hong, Jiming Yang, Weidian Zhou,Feipeng Da
IEEE Signal Processing Letters 2024

被引用0

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种新的多目标跟踪算法BoT-SORT,结合运动和外观信息,并通过相机运动补偿和更准确的卡尔曼滤波状态向量,实现了在MOTChallenge数据集上的领先性能。

方法】:通过融合运动信息和外观信息,引入相机运动补偿,并优化卡尔曼滤波的状态向量,提高了跟踪的鲁棒性和准确性。

实验】:在MOTChallenge数据集上进行了测试,BoT-SORT和BoT-SORT-ReID在MOT17和MOT20测试集上均取得了最高分,具体指标为:MOTA 80.5,IDF1 80.2,HOTA 65.0。数据集名称为MOTChallenge。