Chrome Extension
WeChat Mini Program
Use on ChatGLM

Universality of Approximate Message Passing Algorithms and Tensor Networks

ANNALS OF APPLIED PROBABILITY(2024)

Yale Univ

Cited 22|Views16
Abstract
Approximate Message Passing (AMP) algorithms provide a valuable tool for studying mean-field approximations and dynamics in a variety of applications. Although these algorithms are often first derived for matrices having independent Gaussian entries or satisfying rotational invariance in law, their state evolution characterizations are expected to hold over larger universality classes of random matrix ensembles. We develop several new results on AMP universality. For AMP algorithms tailored to independent Gaussian entries, we show that their state evolutions hold over broadly defined generalized Wigner and white noise ensembles, including matrices with heavy-tailed entries and heterogeneous entrywise variances that may arise in data applications. For AMP algorithms tailored to rotational invariance in law, we show that their state evolutions hold over delocalized sign-and-permutation-invariant matrix ensembles that have a limit distribution over the diagonal, including sensing matrices composed of subsampled Hadamard or Fourier transforms and diagonal operators. We establish these results via a simplified moment-method proof, reducing AMP universality to the study of products of random matrices and diagonal tensors along a tensor network. As a by-product of our analyses, we show that the aforementioned matrix ensembles satisfy a notion of asymptotic freeness with respect to such tensor networks, which parallels usual definitions of freeness for traces of matrix products.
More
Translated text
Key words
Random matrices,free probability,dynamical mean-field theory.
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
SA BOORMAN, DC OLIVIER
1973

被引用85 | 浏览

2009

被引用11913 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest