Exploiting Natural Nonconservative Geochemical Data to Obtain Reservoir Information

Day 2 Wed, September 22, 2021(2021)

引用 1|浏览4
暂无评分
摘要
Abstract Geochemical data in produced water contain important reservoir information but are seldomly exploited, especially for the nonconservative chemicals. Some conservative chemical data have been integrated in history matching workflow to obtain better knowledge of reservoirs. However, assuming reservoir chemicals being conservative is impractical because most chemicals are involved in interactions with other chemicals or reservoir rock, and mistakenly regarding nonconservative chemicals as being conservative can cause large error. Nevertheless, once the interactions can be accurately described, nonconservative chemical data can be used to obtain more reservoir information. In this work, a new physicochemical model is proposed to describe the transport of natural nonconservative chemicals (barium and sulfate) in porous media. Both physical reactions, such as ion adsorption and desorption, and chemical reactions, such as barite deposition, are integrated. Based on the new model, the ensemble smoother with multiple data assimilations (ES-MDA) method is employed to update reservoir model parameters by assimilating oil production rate, water production rate, and chemical data (barium and sulfate concentration). Data assimilation results show that integrating geochemical data in ES-MDA algorithm yields additional improvements in estimation of permeability. Besides, clay content distribution, which is critical in injection water breakthrough percentage calculation, can be accurately estimated with relative root mean square error (rRMSE) being as small as 0.1. However, mistakenly regarding nonconservative chemicals as conservative can cause large errors in reservoir parameters estimation. Accurately modeling the chemical interactions is crucial for integrating chemical data in history matching algorithm.
更多
查看译文
关键词
natural nonconservative geochemical data
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要