Direct Detection of Lithium Exchange across the Solid Electrolyte Interphase by Li-7 Chemical Exchange Saturation Transfer

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2022)

引用 2|浏览12
暂无评分
摘要
Lithium metal anodes offer a huge leap in the energy density of batteries, yet their implementation is limited by solid electrolyte interphase (SEI) formation and dendrite deposition. A key challenge in developing electrolytes leading to the SEI with beneficial properties is the lack of experimental approaches for directly probing the ionic permeability of the SEI. Here, we introduce lithium chemical exchange saturation transfer (Li-CEST) as an efficient nuclear magnetic resonance (NMR) approach for detecting the otherwise invisible process of Li exchange across the metal-SEI interface. In Li-CEST, the properties of the undetectable SEI are encoded in the NMR signal of the metal resonance through their exchange process. We benefit from the high surface area of lithium dendrites and are able, for the first time, to detect exchange across solid phases through CEST. Analytical Bloch-McConnell models allow us to compare the SEI permeability formed in different electrolytes, making the presented Li-CEST approach a powerful tool for designing electrolytes for metal-based batteries.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要