谷歌浏览器插件
订阅小程序
在清言上使用

Manual Operation Evaluation Based on Vectorized Spatio-Temporal Graph Convolutional for Virtual Reality Training in Smart Grid

ENERGIES(2022)

引用 5|浏览2
暂无评分
摘要
The standard of manual operation in smart grid, which require accurate manipulation, is high, especially in experimental, practice, and training systems based on virtual reality (VR). In the VR training system, data gloves are often used to obtain the accurate dataset of hand movements. Previous works rarely considered the multi-sensor datasets, which collected from the data gloves, to complete the action evaluation of VR training systems. In this paper, a vectorized graph convolutional deep learning model is proposed to evaluate the accuracy of test actions. First, the kernel of vectorized spatio-temporal graph convolutional of the data glove is constructed with different weights for different finger joints, and the data dimensionality reduction is also achieved. Then, different evaluation strategies are proposed for different actions. Finally, a convolution deep learning network for vectorized spatio-temporal graph is built to obtain the similarity between test actions and standard ones. The evaluation results of the proposed algorithm are compared with the subjective ones labeled by experts. The experimental results verify that the proposed action evaluation method based on the vectorized spatio-temporal graph convolutional is efficient for the manual operation accuracy evaluation in VR training systems of smart grids.
更多
查看译文
关键词
virtual reality,manual operation accuracy evaluation,graph convolutional neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要