Additive Manufactured Waveguide for E-Band Using Ceramic Materials

APPLIED SCIENCES-BASEL(2022)

引用 1|浏览8
暂无评分
摘要
Featured Application The geometric degrees of freedom of additive manufacturing and the high temperature performance of ceramic materials open up new areas of application such as aerospace or automotive disruptives. Ceramic materials are chemical- and temperature-resistant and, therefore, enable novel application fields ranging from automotive to aerospace. With this in mind, this contribution focuses on developing an additive manufacturing approach for 3D-printed waveguides made of ceramic materials. In particular, a special design approach for ceramic waveguides, which introduces non-radiating slots into the waveguides sidewalls, and a customized metallization process, are presented. The developed process allows for using conventional stereolithographic desktop-grade 3D-printers. The proposed approach has, therefore, benefits such as low-cost fabrication, moderate handling effort and independence of the concrete waveguide geometry. The performance of a manufactured ceramic WR12 waveguide is compared to a commercial waveguide and a conventionally printed counterpart. For that reason, relevant properties, such as surface roughness and waveguide geometry, are characterized. Parsing the electrical measurements, the ceramic waveguide specimen features an attenuation coefficient of 30-60 dB/m within the E-Band. The measured attenuation coefficient is 200% and 300% higher compared to the epoxy resin and the commercial waveguide and is attributed to the increased surface roughness of the ceramic substrate.
更多
查看译文
关键词
printing,additive manufacturing (AM),ceramics,rectangular waveguides,rapid prototyping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要