谷歌浏览器插件
订阅小程序
在清言上使用

Towards composition of carbonatite melts in peridotitic mantle

EARTH AND PLANETARY SCIENCE LETTERS(2022)

引用 9|浏览8
暂无评分
摘要
It is generally accepted that carbonatite metasomatism in the subcontinental lithospheric mantle (SCLM) inevitably causes wehrlitization of the primary lherzolite substrate. However, the K-rich carbonatite inclusions in kimberlitic diamonds containing orthopyroxene indicate that this is not always the case. In the present study, we equilibrated natural garnet lherzolite with carbonate melts containing 33-38 wt% K2O with various Ca# = 10, 20, 30, and 40 at 6 GPa and 1200-1500 degrees C, where Ca# = 100.Ca/(Ca+Mg+Fe). The original ratio of peridotite to carbonate was 58 to 42 by weight. In the studied temperature range, the melt retains essentially carbonate composition with silica content increasing from 1 to 11-12 wt%. The melt with Ca# 10 alters lherzolite to harzburgite, replacing clinopyroxene by orthopyroxene and decreasing CaO content in garnet below 4 wt%. The melts with Ca# 20-30 also consume clinopyroxene; although CaO content in garnet remains in the range of lherzolitic compositions. The melt with Ca# 40 yields wehrlitization, consuming orthopyroxene, increasing clinopyroxene fraction, and increasing CaO content in garnet above 6 wt%. After the interaction, the Ca# of the melt changes as follows 10 -> 16-28, 20 -> 20-33, 30 -> 27-34, and 40 -> 30-34. The olivine + orthopyroxene + clinopyroxene + garnet assemblage was found in equilibrium with carbonatite melt with Ca# 34 at 1200 degrees C and Ca# 30 at 1400 degrees C. Thus, K-rich (26-35 wt% K2O) carbonatite melts with Ca# = 30-34 can appear in equilibrium with garnet lherzolite, while the melts with Ca# < 30 and > 34 can be in equilibrium with harzburgite and wehrlite, respectively, at 6 GPa and 1200-1400 degrees C. Considering that Ca-Mg-Fe carbonates do not melt at the geothermal conditions of the SCLM, while sodic, dolomitic melt causes wehrlitization, high-Mg (Ca# < 35) K-rich dolomitic melt is the only possible carbonatite fluids that are thermodynamically stable in equilibrium with garnet harzburgites and lherzolites in the SCLM at a depth of about 200 km. At higher temperatures corresponding to the underlying asthenosphere, the high alkalinity ceases to be a requirement for the stability of the carbonate melt. Nevertheless, the regularities established here for the K-rich melts remain valid for less alkaline (4-15 wt% Na2O+K2O) primary kimberlite (i.e., mantle carbonatite) melts in the sublithospheric mantle. (C) 2022 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
mantle metasomatism, carbonatite melt, Earth's mantle, high-pressure experiment, lherzolite, wehrlitization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要