Comparison of Microstructure and Mechanical Behavior of Ti-35Nb Manufactured by Laser Powder Bed Fusion from Elemental Powder Mixture and Prealloyed Powder

Journal of Materials Science and Technology/Journal of materials science & technology(2022)

引用 38|浏览15
暂无评分
摘要
Although different types of powder feedstock are used for additive manufacturing via laser powder bed fusion (L-PBF), limited work has attempted to directly compare the microstructure and mechanical behavior of components manufactured from those powder feedstock. This work investigated the microstructure, phase composition, melt pool morphology, and mechanical properties of a prealloyed Ti-35Nb alloy manufactured using L-PBF and compared these to their counterparts produced from elemental powder mixture. The samples manufactured from the powder mixture are composed of randomly distributed undissolved Nb in the alpha/beta matrix, resulting from the unstable melt pool during the melting of the powder mixture. By contrast, parts produced from prealloyed powder display a homogeneous microstructure with beta and alpha '' phases, owing to the full melting of prealloyed powder, therefore, a more stable melt pool to achieve a homogeneous microstructure. The Ti-35Nb manufactured from prealloyed powder exhibits large tensile ductility (about 10 times that of the counterparts using mixed powder), attributed to the high homogeneity in microstructure and chemical composition, strong interface bonding, relatively low oxygen content, and the existence of a large amount of beta phase. This work sheds insights into understanding the effect of powder feedstock on the melt pool stability therefore the microstructure and mechanical behavior of the resultant parts. (C) 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
更多
查看译文
关键词
Titanium-niobium,Powder bed fusion,Additive manufacturing,Melt pool stability,Microstructure,Mechanical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要