谷歌浏览器插件
订阅小程序
在清言上使用

Charge‐Selective, Narrow‐Gap Indium Arsenide Quantum Dot Layer for Highly Stable and Efficient Organic Photovoltaics

Advanced energy materials(2022)

引用 12|浏览30
暂无评分
摘要
The past decade has seen a dramatic surge in the power conversion efficiency (PCE) of next‐generation solution‐processed thin‐film solar cells rapidly closing the gap in PCE of commercially‐available photovoltaic (PV) cells. Yet the operational stability of such new PVs leaves a lot to be desired. Specifically, chemical reaction with absorbers via high‐energy photons transmitted through the typically‐adapted metal oxide electron transporting layers (ETLs), and photocatalytic degradation at interfaces are considered detrimental to the device performance. Herein, the authors introduce a device architecture using the narrow‐gap, Indium Arsenide colloidal quantum dots (CQDs) with discrete electronic states as an ETL in high‐efficiency solution‐processed PVs. High‐performing PM6:Y6 organic PVs (OPVs) achieve a PCE of 15.1%. More importantly, as the operating stability of the device is significantly improved, retaining above 80% of the original PCE over 1000 min under continuous illumination, a Newport‐certified PCE of 13.1% is reported for nonencapsulated OPVs measured under ambient air. Based on operando studies as well as optical simulations, it suggested that the InAs CQD ETLs with discrete energy states effectively cut‐off high‐energy photons while selectively collecting electrons from the absorber. The findings of this works enable high‐efficiency solution‐processed PVs with enhanced durability under operating conditions.
更多
查看译文
关键词
device stability,electron transport layers,InAs quantum dots,narrow-gap,organic photovoltaics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要