Kinetic Study of the Reactions of AlO with H2O and H-2; Precursors to Stellar Dust Formation

ACS EARTH AND SPACE CHEMISTRY(2021)

引用 7|浏览3
暂无评分
摘要
AlO is relatively abundant around oxygen-rich Asymptotic Giant Branch (AGB) stars, where it can react with major gas-phase species such as H-2 and H2O to form AlOH. These Al-containing species are the likely precursors of refractory alumina nanoparticles, which may provide the nuclei for dust formation. In the present study, the kinetics of these AlO reactions were measured from 295 to 780 K using the pulsed laser photolysis of Al(C5H7O2)(3), with time-resolved laser induced fluorescence detection of AlO. The experimental results were interpreted using quantum chemistry calculations and a Master Equation solver for reactions with multiple energy wells. For the recombination reaction AlO + H2O (+ N-2) -> Al(OH)(2), log(10)(k(rec,0)/cm(6) molecule(-2) s(-1)) = -32.9185 + 8.80276 log(10)(T) - 2.4723(log(10)(T))(2); log(10)(k(rec,8)/cm(3) molecule(-1) s(-1)) = -19.4686 + 7.62037 log(10)(T) - 1.47214(log(10)(T))(2); Fc = 0.28 (uncertainty +/- 13% from 295 to 760 K). For the bimolecular reactions, k(AlO + H2O -> AlOH + OH) = (3.89 +/- 0.47) x 10(-10) exp(-(1295 +/- 150)/T) and k(AlO + H-2 -> AlOH + H) = (5.37 +/- 0.52) x 10(-13) (T/300)((2.77 +/- 0.19)) exp(-(2190 +/- 110)/T) cm(3) molecule(-1) s(-1). Rate coefficients for Al + H2O -> AlOH + H, AlOH + H. AlO + H-2 or Al + H2O, and the absorption cross sections of AlOH and AlO were calculated theoretically. Al chemistry around an O-rich AGB star was then investigated using a beta-trajectory model, which predicts that AlOH is the major gas-phase Al species beyond two stellar radii and shows that the relative AlO abundance is very sensitive to the AlOH photolysis rate.
更多
查看译文
关键词
aluminum oxide reactions, laser-based kinetic technique, RRKM theory, master equation analysis, electronic structure theory, AGB stars, stellar outflow chemistry, alumina dust formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要