谷歌浏览器插件
订阅小程序
在清言上使用

Real-time Measurements of Mineral Dust Concentration in Coarse Particulate Matter (PM10-2.5) by Employing a Novel Optical-Based Technique in Los Angeles.

Social Science Research Network(2022)

引用 0|浏览6
暂无评分
摘要
As a primary component of coarse particulate matter (PM), ambient mineral dust has been linked to adverse health effects. Los Angeles, the largest metropolitan urban area of the United States, is impacted by both windblown and localized sources of mineral dust, often internally mixed with black carbon. The estimation of mineral dust concentrations with a high time resolution becomes critical in improving our understanding of its sources and temporal trends. Using Aethalometers combined with a high-volume virtual impactor (VI) to enrich coarse (2.5 ˂ dp ˂ 10 μm) particles, the light absorption and mass concentration of mineral dust were estimated in real-time during summer, fall, and winter over 2020-2021. The concentration-enriched coarse PM was collected on Teflon filters, and its chemical composition in terms of trace elements and metals was chemically quantified. The high time-resolution measurements enabled us to calculate the absorption coefficient of enriched dust particles by subtracting the light absorption of the post-VI coarse PM from that of the PM2.5 aerosol fraction to reduce the impact of stronger light absorbers in ambient PM. Mineral dust was more prevalent during the fall and winter campaigns (i.e., 19.3 and 11.4 μg/m3, respectively), lower concentrations were observed during the summer campaign (i.e., 8.50 μg/m3). The calculated absorption Ångström exponent (AAE) was 2.18, highlighting the presence of dust particles during the sampling period. The dust mass absorption coefficient was estimated to be 2.7 ± 1.6 Mm-1 at 370 nm and 0.41 ± 0.16 Mm-1 at 880 nm wavelengths, respectively. The validation of the proposed approach was investigated by comparing the evaluated mineral dust mass concentrations in this study with the reported coarse PM concentrations by the California Air Resources Board (CARB). The results reported by the optical-based approach with high temporal resolution can provide crucial information on identifying sources of mineral dust in urban areas.
更多
查看译文
关键词
Mineral dust,Coarse particulate matter,Aethalometer,Aerosol optical properties,Virtual impactor/concentrator,Los Angeles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要