Using Crowd-Sourced Low-Cost Sensors in a Land Use Regression of PM2.5 in 6 US Cities
Air Quality Atmosphere & Health(2022)
California State University | University of Washington | Carnegie Mellon University | Virginia Tech
Abstract
Assessing exposure to ambient fine particulate matter (PM2.5) is important for improving human health. With rapidly expanding low-cost sensor networks globally, it is possible for monitoring networks to be located by a variety of users (i.e., crowd sourcing) to increase measurement density and coverage for use in exposure assessment, e.g., national land use regression (LUR) models. Few studies have integrated low-cost sensors into LUR models across multiple cities, limiting the ability of modelers to fully utilize growing low-cost sensor networks worldwide. We developed five LUR models to predict annual average PM2.5 concentrations using combinations of regulatory (six cities: n = 68; national: n = 757) and low-cost monitors (n = 149) from six US cities. We found that developing Hybrid LURs that include the low-cost (i.e., PurpleAir) network may better capture within-city variation. LURs with the PurpleAir data only (tenfold CV R2 = 0.66, MAE = 2.01 µg/m3) performed slightly worse than a conventional LUR based on regulatory data only (tenfold CV R2 = 0.67, MAE = 0.99 µg/m3). Hybrid models that included both low-cost and regulatory data performed similarly to existing national models that rely on regulatory data (hybrid models: tenfold CV R2 = 0.85, MAE = 1.02 µg/m3; regulatory monitor models: R2 = 0.83, MAE = 0.72 µg/m3). Integrating crowd-sourced low-cost sensor networks in LUR models has promising applications to help identify intra-city exposure patterns especially for regions with limited regulatory networks internationally.
MoreTranslated text
Key words
Open data,Low-cost monitoring,Empirical model,Hybrid model,Within-city variability
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023
被引用2
International Journal of Environmental Research and Public Health 2022
被引用14
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022
被引用4
An Analysis of Degradation in Low-Cost Particulate Matter Sensors
ENVIRONMENTAL SCIENCE-ATMOSPHERES 2023
被引用6
FRONTIERS IN ENVIRONMENTAL SCIENCE 2023
被引用2
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2023
被引用1
Low‐cost Air Quality Monitoring Networks for Long‐term Field Campaigns: A Review
METEOROLOGICAL APPLICATIONS 2023
被引用2
High Spatio-Temporal Resolution Predictions of PM2.5 Using Low-Cost Sensor Data
ATMOSPHERIC ENVIRONMENT 2024
被引用1
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper