Chrome Extension
WeChat Mini Program
Use on ChatGLM

Interaction of resorcinol-formaldehyde carbon aerogels with water: A comprehensive NMR study

CARBON(2022)

Cited 9|Views20
No score
Abstract
Carbon aerogels prepared from resorcinol-formaldehyde aerogels are promising platforms for electrodes, catalysts, adsorbents in environmental chemistry and as electric conductors. For these applications the knowledge of their structure and behavior in aqueous medium is essential. In this work two resorcinolformaldehyde (RF) carbon aerogels prepared in different ways were characterized with various NMR methods while their pore structure was stepwise saturated with water. The wetting properties were studied by vapor adsorption and low-field NMR relaxometry, while the morphology was followed by NMR cryoporometry during the hydration process. At several water saturation levels the self-diffusion of water was measured. The comprehensive evaluation of the results led to a detailed description of the wetting process of these carbon aerogels beyond the pore size distributions. At low hydration level water clusters formed on and around the hydrophilic functional groups of the surface being able to adsorb water, but no continuous water layer developed on the surface. With increasing water content, spherical water drops formed inside the pore system, and vapor phase diffusion was observed in the partially filled pores. Subsequently the interconnected pore structure was saturated. The determined wet structure was compared to low temperature nitrogen gas adsorption results and scanning electron microscopy images. (c) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
More
Translated text
Key words
RF carbon aerogel,Pore morphology,Hydration mechanism,NMR cryoporometry,LF NMR relaxometry,Self-diffusion,Vapor adsorption
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined