Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein

Genetics in Medicine(2023)

引用 7|浏览34
暂无评分
摘要
Purpose: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized the clinical, molecular and functional spectra of ANKRD11 missense variants. Methods: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants by in silico analyses and cell-based experiments. Results: We identified 29 individuals with (mostly de novo) ANKRD11 missense variants, who presented with syndromic neurodevelopmental disorders and were phenotypically similar to individuals with KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in Repression Domain 2. Cellularly, most variants caused reduced ANKRD11 stability. One variant resulted in decreased proteasome degradation and loss of ANKRD11 transcriptional activity. Conclusion: Our study indicates that pathogenic heterozygous missense variants in ANKRD11 cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges, as the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要