谷歌浏览器插件
订阅小程序
在清言上使用

High stability in near-infrared spectroscopy: part 1, adapting clock techniques to optical feedback

Applied Physics B(2022)

引用 7|浏览0
暂无评分
摘要
Optical feedback is an efficient way to narrow and stabilise semi-conductor lasers. As a step forward for ultra-stable, yet highly tunable sources, we developed a new prototype of a three-mirror V-shaped optical cavity (VCOF). It is made of a precisely machined Zerodur spacer, that holds 3 optical contacted mirrors forming a high finesse V-shaped cavity. This arrangement allows the resonant light to be sent back to the seeding laser, triggering a drastic narrowing of the emission linewidth well below the cavity mode width without the need for high-bandwidth active electronic lock of the laser on the cavity. Low expansion material and precise temperature control of the reference cavity leads to a source with Hz level frequency drift and 70 Hz-level emission linewidth at 215 THz. We discuss the benefits of this new prototype compared to its predecessor for high-sensitivity cavity ring down spectroscopy (CRDS). To serve this purpose, the frequency stabilised laser was characterised on short, mid and long time scales, using a high finesse etalon, a self referenced optical frequency comb and a long term saturated CRDS absorption Lamb dip measurement on water.
更多
查看译文
关键词
spectroscopy,optical feedback,clock techniques,high stability,near-infrared
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要