谷歌浏览器插件
订阅小程序
在清言上使用

Assessment of Two Commonly Used Dermal Regeneration Templates in a Swine Model Without Skin Grafting

Applied sciences(2022)

引用 2|浏览0
暂无评分
摘要
In the medical care of partial and full-thickness wounds, autologous skin grafting is still the gold standard of dermal replacement. In contrast to spontaneous reepithelializing of superficial wounds, deep dermal wounds often lead to disturbing scarring, with cosmetically or functionally unsatisfactory results. However, modern wound dressings offer promising approaches to surface reconstruction. Against the background of our future aim to develop an innovative skin substitute, we investigated the behavior of two established dermal substitutes, a crosslinked and a non-crosslinked collagen biomatrix. The products were applied topically on a total of 18 full-thickness skin defects paravertebrally on the back of female Göttingen Minipigs—six control wounds remained untreated. The evaluation was carried out planimetrically (wound closure time) and histologically (neoepidermal cell number and epidermis thickness). Both treatment groups demonstrated significantly faster reepithelialization than the controls. The histologic examination verified the highest epidermal thickness in the crosslinked biomatrix-treated wounds, whereas the non-crosslinked biomatrix-treated wounds showed a higher cell density. Our data presented a positive influence on epidermal regeneration with the chosen dermis substitutes even without additional skin transplantation and, thus, without additional donor site morbidity. Therefore, it can be stated that the single biomatrix application might be used in a clinical routine with small wounds, which needs to be investigated further in a clinical setting to determine the size and depths of a suitable wound bed. Nevertheless, currently available products cannot solely achieve wound healing that is equal to or superior to autologous tissue. Thus, the overarching aim still is the development of an innovative skin substitute to manage surface reconstruction without additional skin grafting.
更多
查看译文
关键词
animal model,dermal regeneration,Integra,Matriderm,skin substitute,wound healing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要