谷歌浏览器插件
订阅小程序
在清言上使用

Peroxisome Proliferator-Activated Receptor-Γ Ameliorates Neuronal Ferroptosis after Traumatic Brain Injury in Mice by Inhibiting Cyclooxygenase-2.

Experimental neurology(2022)

引用 19|浏览28
暂无评分
摘要
Among the multiple kinds of neuronal cell death triggered by traumatic brain injury (TBI), ferroptosis, an iron-dependent lipid peroxidative regulatory cell death, has a critical role. Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear transcription factor that regulates lipid metabolism and suppresses neuronal inflammation. However, the role of PPARγ in neuronal ferroptosis induced by TBI remains unclear. Here, we investigated the regulatory effect of PPARγ on neuronal ferroptosis in a weight-drop TBI model in vivo and an RAS-selective lethal 3 (RSL3)-activated ferroptotic neuronal model in vitro. PPARγ was mainly localized in the nucleus of neurons and was decreased in both the in vivo TBI model and the in vitro ferroptotic neuronal model. The addition of a specific agonist, pioglitazone, activated PPARγ, which protected neuronal function post-TBI in vivo and increased the viability of ferroptotic neurons in vitro. Further investigation suggested that PPARγ probably attenuates neuronal ferroptosis by downregulating cyclooxygenase-2 (COX2) protein expression levels in vivo and in vitro. This study revealed the relationship among PPARγ, ferroptosis and TBI and identified a potential target for comprehensive TBI treatment.
更多
查看译文
关键词
PPARγ,Ferroptosis,COX2,Neurons,Traumatic brain injury
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要